Update on improving the fission-product yields of ¹⁴⁷Nd, ¹⁵⁶Eu and ¹¹¹Ag

D. Melconian, V.E. Iacob, J. Clark, G. Savard, D.E.M. Hoff, K. Kolos, N. Scielzo, and M.A. Stoyer

¹Argonne National Laboratory, Lemont, Illinois ²Lawrence Livermore National Laboratory, Livermore, California

We have submitted a manuscript to Phys Rev C on the ¹⁴⁷Nd gamma-ray branching ratios, which was favorably received; it should be published in the next few weeks after we finish addressing the referee comments. Looking ahead, we have high-quality data on the gamma-ray branching ratios of ¹¹¹Ag and ¹⁵⁶Eu. The collaboration decided to pursue completing the analysis of the ¹⁵⁶Eu in parallel with analyzing the ¹¹¹Ag results. Currently, the values for the branching ratios of ¹⁵⁶Eu from the most recent evaluation [1] have uncertainties of ranging from 7-14% for the 10 most intense γ rays and up to 30% for the weaker ones. The analysis is proceeding well, however it is difficult due to the sheer number of transitions (~100). Fig. 1 shows the gamma spectrum (in coincidence with a detected beta particle), where all of the observed peaks are attributed to ¹⁵⁶Eu except for the one small ⁹⁹Mo/Tc contaminant peak labelled in the plot. Initial results indicate we will greatly improve the precision of the decay properties.

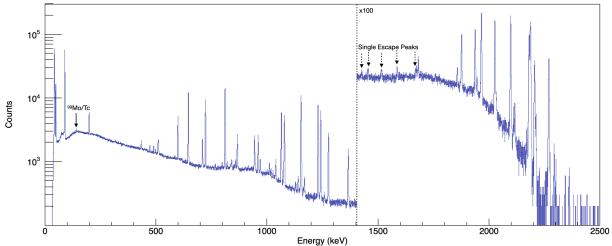


FIG.1. The total γ -ray spectrum from the sample of 156 Eu observed during the experiment. The indicated transition show the impurity 99 Mo/Tc observed during the second run. All other lines are attributed to the decay of 156 Eu.

As an example, our preliminary result for the most intense branch (1153.67 and 1154.08 keV, two transitions we are not able to resolve with our HPGe) is 11.39(12)%, over 5x more precise than the current 11.5(7)%. We will improve the second most intense transition (811.7 keV) from 9.7(8)% to 9.75(8)%, an order of magnitude improvement.

We expect to submit the 156 Eu results by fall of 2024 and then will proceed with completing the 111 Ag data.

- [1] C. Reich, Nuclear Data Sheets 113, 2537 (2012).
- [2] A. F. Kluk, Phys. Rev. C 10, 1451 (1974).
- [3] Y. Iwata, Journal of the Physical Society of Japan 49, 2114 (1980).